



# Searches for Heavy Neutrinos at the LHC

### Un-ki Yang Seoul National University On behalf of the ATLAS and CMS collaborations

High1-2014 KIAS-NCTS Workshop, Feb. 9-15, 2014

# Why Heavy Neutrinos?

- > Neutrinos oscillates between all three flavours
   → at least two massive neutrions
- First conclusive experimental evidence for BSM physics
- Sum of light neutrino masses
   < 0.3 eV from cosmology</li>
- Small neutrino mass can be naturally explained by the SeaSaw mechanism with Majorana heavy neutrinos





# SeaSaw mechanism

Standard seesaw mechanism:

Majorana mass terms can be added to the SM Lagrangian 'for free'

$$m_{\nu} \approx \frac{m_D^2}{M}.$$

> Normally means for  $M_{\nu}$  that  $M_N$  >> TeV (i.e., not interesting at the LHC)



But there are frameworks with smaller heavy neutrino

 one attractive model, minimal Type-1 Seesaw mechanism (no extra gauge boson)
 → TeV scale heavy neutrinos

$$m_
u^{
m light} ~\sim~ {m_e^2\over m_N} ~\sim~ 0.1~{
m eV}$$

[Pilaftsis '92; Kersten, Smirnov '07; Ibarra, Molinaro, Petcov '10; Mitra, Senjanović, Vissani '11; ...]

#### With a more fundamental theory

 'Left-Right Symmetric Model' (LRSM) which adds a chiral SU(2)<sub>R</sub> symmetry to the SM (extra new bosons)

# Minimal Type-1 Seesaw Model

- Search for heavy neutrino production at LHC in Lepton Number Violating (LNV).: equivalent to neutrino-less double beta decay
- Single heavy neutrinos, pair production of heavy neutrinos



Signal: 2 leptons + 2 jets + no  $p_T$ 

LNV signatures:  $pp \rightarrow e^+e^+, e^+\mu^+, e^-e^-$ 

LFV signatures:  $pp \rightarrow e^+\mu^-, \ e^-\mu^+, \ e^-\tau^+$ 

### **Previous Constraints on Mixing**

- > Use rare leptonic decays of pion/kaons.
- As well as direct searches at LEP



<sup>[</sup>Atre, Han, Pascoli, Zhang '09]

### **Previous Constraints on Mixing**

Electroweak precision data constraints using global fit to tree level processes involving light neutrino experiments.

$$\sum_{i} |V_{eN_i}|^2 \leq 3.0 \times 10^{-3}, \ \sum_{i} |V_{\mu N_i}|^2 \leq 3.2 \times 10^{-3}, \ \sum_{i} |V_{\tau N_i}|^2 \leq 6.2 \times 10^{-3}$$

[Langacker, London '88; Bhattacharyya et al '91; Pilaftsis '95; del Aguila, de Blas, Perez-Victoria '08]

Additional stringent bounds are set on the coupling V<sub>eN</sub> between N and electrons set by double neutrino-less beta decay experiments

$$\left|\sum_{i=1}^{n} \frac{V_{eN_i}^2}{m_{N_i}}\right| < 5 \times 10^{-8} \ {\rm GeV^{-1}}$$

LFV constraints for mixing involving 2 leptons

$$\left|\sum_{i} V_{eN_{i}} V_{\mu N_{i}}^{*}\right| \leq 10^{-4}, \ \left|\sum_{i} V_{eN_{i}} V_{\tau N_{i}}^{*}\right| \leq 10^{-2}, \ \left|\sum_{i} V_{\mu N_{i}} V_{\tau N_{i}}^{*}\right| \leq 10^{-2}$$

[Korner, Pilaftsis, Schilcher '93; Ilakovac, Pilaftsis '94; Tommasini et al. '95; Illana, Riemann '00]

### Heavy Neutrinos in the Left-Right Symmetric Model (LRSM)



- A high energy gauge theory that can explain parity violation in weak sector
- Includes 3 (TeV scale) gauge bosons (2W<sub>R</sub> and Z')
- Naturally introduces heavy right-handed neutrinos, N<sub>I</sub> (m<sub>N</sub>, m<sub>WR</sub> and m<sub>Z</sub>, are free parameters)
- Promising signature at LHC

## **Use the Large Hadron Collider!!!**



High precision multipurpose detecto Excellent vertex and tracking system (p = 0.02%) Excellent calorimetry (energy tets = 1.0 electron = 0.02 Large coverage for muon detection







### **Before Searching for New Physics**





Impressive agreement with the SM across orders of magnitude

# Z(dileptons) + jets

#### JHEP 07 (2013) 032



 Inclusive and diff. cross sections measured in Z+jets

# Good agreement with NLO pQCD calculation, BlackHat+SHERPA

# Searches for Heavy Neutrinos Minimal Seesaw Type 1



Final states: dileptons + 2 jets + no missing transverse energy (MET)

Use only same sign leptons channels: due to a large Z+jets bkgds

#### > Challenges:

- Small signal cross sections but large bkgds from misidentified leptons from multijet QCD events
- Understanding charge misidentification rate for electron: important from Z+jets bkgd

### **Event Selection 1**

### Common Selection

- 2 same sign leptons (isolated)
- Njets: at least two jets





### **Event Selection 2**

### > Difference in selection

#### CMS Event Selection:

- 20/10 GeV lepton pt cuts.
- Di-lepton Triggers
- MET < 50 GeV.
- Third letpton veto

#### ATLAS Event Selection:

- 20/20 GeV lepton pt cuts.
- Single lepton trigger
- MET < 35 GeV</li>
- Veto on third loose lepton
- 55 < M(jj) < 120 GeV

### > Remarks

- CMS: di-lepton trigger → lower pt cut → increase acceptance for low m<sub>N</sub>, but more QCD bkgds
- 3<sup>rd</sup> lepton veto: remove WZ/ZZ bkgds
- ATLAS: mass of two leading jets to be near m<sub>w</sub>

# Signal acceptance @ ATLAS



| Signal $m_N$ [GeV]       | 100 | 120  | 140  | 160  | 180  | 200  | 240  | 280  | 300  |
|--------------------------|-----|------|------|------|------|------|------|------|------|
| Selection Efficiency [%] | 3.9 | 13.0 | 18.1 | 21.3 | 23.9 | 25.7 | 28.7 | 30.8 | 31.7 |

.

Table 1: Efficiency for signal MC events to pass the event selection criteria.

# **Backgrounds and systematics**

#### **Backgrounds**

MisIdentified Lepton:  $b\overline{b} / t\overline{t} / W$ +jets (uses data) Charge mis-reconstruction: Z+jet (data and MC) only in electron channel. Prompt: WZ, ZZ, SS WW, V+ $t\overline{t}$  (MC) <u>Main Systematics</u> QCD background (35-50%). Charge misID 25%. (CMS only) Jet Energy Uncertainty

Largest background is misidentified lepton in CMS (blue), WZ in ATLAS (Green).





# Results

- No excess observed: both ATLAS & CMS limits on cross sections and coupling parameter V<sub>IN</sub>
- > First direct limits for m<sub>N</sub>>90 GeV from LHC



### Left-Right Symmetric Model (LRSM)





Same Final state as SeaSaw-1 but very different kinematics (higher energy final state)

#### Challenges:

- For m<sub>N</sub><<m<sub>WR</sub>, jets and lepton from N decay overlap
   → standard isolation will kill signals
- Same challenges as SeeSaw Type-1 in terms of bkgds

### **Event Selection**

#### CMS Baseline Selection:

- 2 Isolated\* leptons (e/mu),
- No charge requirement on leptons.
  - Lepton 1/2 pt > 60/40 GeV,
  - Njet ≥ 2 \*,
  - M(II) > 200 GeV,

(remove SM backgrounds),

• M(lljj) (i.e m(W<sub>R</sub>)) > 600 GeV.

### ATLAS Baseline Selection:

2 SS/OS isolated leptons,

Njet ≥ 1,

- Lepton pt > 25 GeV,
- M(II) > 110 GeV remove Z's
  - $S_T > 400 \text{ GeV} (S_T \text{ is sum of lepton + jet momenta}), m(IIjj) (i.e m(W_R)) > 400 \text{ GeV}.$
- \* Signal efficiency drops as  $m_N$  increases as N is boosted!
- > Remarks
  - With higher energy final state, a large Z backgrounds can be removed. SS/OS are used
  - CMS: tighter cuts to reduce more SM bkgds 
     better for signal with large  $m_N$
  - ATLAS: try to recover signals with boosted N (1 jet events)

# Candidate: ee+2jets

CMS Experiment at LHC, CERN Data recorded: Thu Jun 7 03:54:15 2012 CEST Run/Event: 195656 / 101901087 Lumi section: 111 LRSM Signal candidate: Run 195656 Event 101901087 M(eejj) = 1.9 TeV

# **Backgrounds & Systematics**

| Dominant<br>Backgrounds   | CMS       | ATLAS     |
|---------------------------|-----------|-----------|
| Z+jets                    | Data + MC | MC        |
| ChargeFlip                | MC        | Data      |
| Lepton MisID              | Data      | Data      |
| $tar{t}$ (fully leptonic) | Data      | Data + MC |



Dominant Systematic CMS: Background shape (16-53%) ATLAS: Lepton MisID (SS) / Jet Energy (OS)





# Limits in the LRSM

- Both use the shape of reconstructed WR mass
- Exclusion in m<sub>N</sub> and m<sub>WR</sub> plane

#### CMS

Best sensitivity in combining 7+8 TeV muon channel exclude up to 2.9 TeV



#### ATLAS

Best sensitivity in OS + SS channels. Exclude up to 2.5 TeV.



# Prospects

- > Both ATLAS and CMS groups plan to update the results using the full dataset by this summer (including tau channel)
- The LHC searches have been based on only the s-ch Wexchange diagram, but the t-ch. Is found to be a comparable contribution



Dev, Pilaftsis, Yang: PRL 2014



 $\succ$  Even with 5/fb of 14 TeV data, the limit will be improved by the factor of five

# Conclusion

- > ATLAS and CMS have searched for heavy neutrinos in the event sample containing 2 leptons, 2 jets and no missing transverse energy
- > With no excess seen in data, 95% CL have been set
  - LRSM: on the mass of heavy neutrino (up to 1.8 TeV) and W<sub>R</sub> mass (up to 2.9 TeV)
  - SeaSaw type-1: on the coupling of heavy neutrino and lepton verses m<sub>N</sub>
- > Updated results with full 2012 dataset will be available soon
- With high-Lum 300 fb<sup>-1</sup> data by 2017 ( a factor of 4 larger Xsection at m<sub>N</sub>=500 GeV), systematic searches in different channels will be performed: MORE EXCITING TIME

# ICHEP-2018 유치회의

### 12일(수) 13:30~15:00

### 하이원 리조트 F동 3층 Lily Hall

### 관심 있으신 분들의 많은 참석바랍니다.